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A quantum positioning system (QPS) is proposed that can provide a user with all four
of his space-time coordinates. The user must carry a corner cube reflector, a good clock,
and have a two-way classical channel of communication with the origin of the reference
frame. Four pairs of entangled photons (biphotons) are sent through four interferometers:
three interferometers are used to determine the user’s spatial position, and an additional
interferometer is used to synchronize the user’s clock to coordinate time in the reference
frame. The spatial positioning part of the QPS is similar to a classical time-of-arrival (TOA)
system, however, a classical TOA system (such as GPS) must have synchronized clocks that
keep coordinate time and therefore the clocks must have long-term stability, whereas in the
QPS only a photon coincidence counter is needed and the clocks need only have short-term
stability. Several scenarios are considered for a QPS: one is a terrestrial system and another
is a space-based-system composed of low-Earth orbit (LEO) satellites. Calculations indicate
that for a space-based system, neglecting atmospheric effects, a position accuracy below the
1 cm-level is possible for much of the region near the Earth. The QPS may be used as a
primary system to define a global 4-dimensional reference frame.

PACS numbers: 06.30.Ft, 06., 95.55.Sh, 42.50.Dv

I. INTRODUCTION

During the past several years, the Global Positioning System (GPS) has practically become
a household word. The GPS is a U.S. Department of Defense satellite system that is used by
both the military and civilians for navigation and time dissemination[1, 2, 3]. Automobile, ship,
aircraft, and spacecraft use the GPS for navigation. Telephone and computer network systems
that require precise time use the GPS for time synchronization. The GPS is a complex system
consisting of approximately 24 satellites orbiting the Earth in circular orbits at approximately 4.25
Earth radii. The GPS is designed so that signals travel line-of-site from satellite to user, and from
any place on Earth at least four satellites are in view. If a user receives four GPS satellite signals
simultaneously from four satellites, s = 1, 2, 3, 4, and the satellites’ space-time coordinates (ts, rs)
at time of transmission are known, the user can solve for his unknown space-time coordinates,
(to, ro), by solving the four equations[4, 5]

|ro − rs|2 − c2(to − ts)
2 = 0, s = 1, ...4 (1)

In Eq.(1) we assume that the signals travel on four light cones that are centered at the reception
event and we have ignored atmospheric delays. The actual signals that the GPS satellites transmit
are continuous-wave circularly polarized radio-frequency signals on two carrier frequencies in the
L-band centered about: L1 ≈ 1575.42 MHz and L2 ≈ 1227.6 MHz. The carrier frequency signals
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are modulated by a pseudorandom noise (PRN) code. A GPS receiver makes a phase difference
measurement, called a pseudorange measurement, which is the phase difference between the PRN
code received from the satellite and an identical copy of the PRN code that is replicated inside
the GPS receiver, see Ref.[5] for details of the GPS pseudorange measurement process. The
pseudorange measurement is essentially made by performing a correlation of the code bits in the
PRN code received from the satellite with an identical copy of the same PRN code replicated inside
the GPS receiver.

Recently, there have been several proposals for synchronizing clocks by making use of entangled
quantum systems[6, 7, 8, 9, 10, 11, 12]. The question naturally arises whether entangled quantum
systems can be exploited to determine all four space-time coordinates of a user, rather than just
time.

In this article, I describe a quantum positioning system (QPS) that is in-principle capable of
providing a user with all four of his space-time coordinates. This QPS is the quantum analog of
the classical GPS described above. The QPS is based on entangled photon pairs (biphotons) and
second order correlations within each pair. The two-photon coincidence counting rate is the basic
measured quantity. In order to determine his four space-time coordinates, a user of the QPS must
carry a corner cube reflector, a good clock, and have a two-way classical channel for communication
with the origin of the reference frame.

II. INTERFEROMETRIC QUANTUM POSITIONING SYSTEM

For simplicity of discussion, I assume that space-time is flat with Minkowski[5] coordinates
(t, x, y, z) and that the user of the QPS is stationary. The complete QPS consists of four biphoton
sources (entangled photon pairs), four beam splitters and four two-photon coincidence counting
Hong-Ou-Mandel (HOM) interferometers, see Figure 1. Three of the interferometers are used
together to solve for the user’s position and one interferometer is used to solve for the user’s time,
in a particular reference frame.

Six spatial points, Ri, where Ri = (xi, yi, zi), for i = 1, 2, 3, ..., 6, define the spatial part of
the reference frame at constant coordinate time t. The six points Ri define three independent
baselines in pairs, (R1,R2), (R3,R4), and (R5,R6). The points Ri are assumed to be accurately
surveyed, so their coordinates are precisely known. Determination of a user’s spatial coordinates,
ro = (xo, yo, zo), is done with respect to this reference frame. A stationary clock in this reference
frame, say at the origin of coordinates, (x, y, z) = (0, 0, 0), provides a measure of coordinate time
t in this 4-dimensional system of coordinates. We neglect all gravitational effects[4] so that the
user’s clock, which keeps proper time τ , runs at the same rate as coordinate time t in the reference
frame defined by the spatial points Ri, so that dτ/dt = 1 . Synchronization of the user’s clock
to coordinate time[13] means that we have a method to compute the integration constant τo in
τ − τo = t. In four dimensional flat space-time, the world lines of the spatial points Ri define a
tube. Events that are simultaneous in this system of 4-dimensional coordinates occur at constant
values of coordinate time t, which is a hyperplane that cuts this tube.

There are several possible modes for the QPS. First, consider a user that must determine all four
of his space-time coordinates (to, xo, yo, zo). In a previous paper[12], an algorithm has been given
to synchronize the proper time τ on a user’s clock to coordinate time, t, without prior knowledge
of the geometric range from the reference clock (which keeps coordinate time t) to the user clock.
We assume that this algorithm is employed here to synchronize the user’s clock with coordinate
time t. This algorithm requires a two-way classical channel of communication between the user
and the reference frame origin, where coordinate time t is kept. The three spatial coordinates are
determined separately as follows, refer to Figure 1.
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Each baseline, such as the one connected by points, (R1,R2), contains an entangled photon
pair (biphoton) source[14, 15, 16, 17, 18] located in the baseline. For convenience, we take the
biphoton source to be at the midpoint of the baseline at point E1 at position r1. Additionally, each
baseline contains a 50:50 beam splitter and two photon detectors, see Figure 2. For simplicity of
discussion, we assume that the biphoton source is essentially collocated with the beam splitter and
two photon detectors at point E1, see Figure 2. Along the baseline there is a controllable optical
delay at point D1. The other two baselines contain the same equipment, as shown in Figure 2.
The QPS works as follows.

Photon pairs are created at E1, are sent to positions R1 and R2, and are re-directed to the
user at the unknown position ro. The two photon paths are similar, except that one path has
a controllable optical delay D1. The optical delay is assumed to be calibrated so that we can
accurately impose an arbitrary delay time[19]. Next, the entangled photons reflect from the user’s
corner cube reflector at ro, and return back through the same paths, through points R1 and R2,
and arrive at a HOM interferometer that is collocated at E1 at position r1, see Figure 2. For
convenience, we assume that the interferometer is collocated with the photon generation point r1.
Again, both photon return paths are similar, but one path has the optical delay D1. We have the
following effective round-trip times for each photon path

tL =
2

c
[|ro − R1| + |R1 − r1|] (2)

tR =
2

c
[|ro − R2| + |r1 − R2| + (n − 1) d]

where d is the geometric thickness of the optical delay D1 perpendicular to the optical path and n
is the effective index of refraction for the optical delay D1. The optical delay D1 is now adjusted
until a minimum is observed in the two-photon counting rate at E1[15]. When the minimum in
photon coincidence counting rate is observed at interferometer E1, the effective travel times for
each photon path are equal, tL = tR. The interferometer is balanced when the condition tL = tR is
satisfied, and a unique minimum is observed in the two-photon counting rate Rc. The accuracy with
which this minimum can be observed depends on the bandwidth ∆ω of the band-pass interference
filters used in front of the photon detectors.

We get an equation that relates the geometric path lengths to the measured optical delay time
∆t1 = (n − 1)d/c:

|ro − R1| + |R1 − r1| = |ro − R2| + |r1 − R2| + c∆t1 (3)

An analogous measurement process is carried out for the other two baselines. For simplicity, I
assume that the points E1, E2, and E3 are located at midpoints of their baselines. We then obtain
the three equations

|ro −R1| = |ro −R2| + s1 (4)

|ro −R3| = |ro −R4| + s2 (5)

|ro −R5| = |ro −R6| + s3 (6)

where si = c∆ti for i = 1, 2, 3.
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The two-photon coincidence counting rate is given by[20, 21, 22]

Rc = α1α2|ηV |2|G(0)|2[1 − e−(∆ω∆t1)2 ] (7)

where |V |2 is the pump intensity in photons per second, α1 and α2 are the quantum efficiencies
of detectors D1 and D2, η is a dimensionless constant and G(t) is the Fourier transform of the
spectral function φ, which is the auotocorrelation function of the down-converted light

G(t) =

∞
∫

0

φ(
1

2
ω0 + ω,

1

2
ω0 − ω)e−iωtdω (8)

The Eqs.(4)-(6) can be solved for the three unknown user spatial coordinates, ro = (xo, yo, zo), in
terms of the three measured time delays, ∆t1, ∆t2, ∆t3, which balanced the three interferometers.
The measured data consists of photon coincidence count rate vs. optical time delay lengths si, for
i = 1, 2, 3. Clearly a search must be done of the data to locate the minimum that corresponds to
equal time of travel along the interferometer arms. The computations can be done at points E1, E2,
and E3. This search to locate the minimum is the quantum analog of the correlation of the PRN
code in a classical GPS receiver, which was described above. When the three interferometers
at E1, E2, and E3 have been balanced simultaneously, a classical message is sent to the user
giving him the values of his coordinates ro = (xo, yo, zo). Clearly, classical communication is
needed between the points R1, R2, and R3 to establish that the interferometers are balanced at
a given coordinate time t. We imagine that when each interferometer is balanced, a message is
sent to the origin of coordinates. When three messages are simultaneously received at the origin
of coordinates (saying that the three interferometers are balanced), Eqs.(4)-(6) are solved for the
user’s coordinates ro = (xo, yo, zo) and the user’s coordinates are sent to the user through a classical
channel of communication.

In the QPS that we describe, there is an apparent asymmetry in the determination of a user’s
spatial coordinates, ro = (xo, yo, zo), and in the determination of the user’s time. In my view, this
asymmetry is a reflection of the asymmetric way that space and time enter in the theory of the
quantized electromagnetic field to give rise to photons as quanta of the field. As mentioned above,
the time synchronization of the user’s clock to coordinate time is done by a method previously
described by Bahder and Golding[12]. Therefore in what follows, I discuss only the spatial part
of the QPS.

With some modification of the above scheme, we may imagine that we could design a similar
system based on first-order coherence for position determination[20, 21]. A single beam from a
continuous-wave laser can be split and the beams sent on two different paths. However, in such a
case, there would be an ambiguity that is associated with the wavelength of the light (interference
fringes will be seen) that is unresolvable in principle. In contrast, in the quantum case (which
relies on second-order coherence) the ambiguity is resolved because equal propagation times for two
paths lead to quantum interference: equal travel times for two paths create a unique observable
minimum in the two-photon coincidence counting rate Rc.

The measured quantities in the QPS are the optical path delays si. For a given measured
value of optical delay, say s1, Eq.(4) specifies that the user’s coordinates must lie on a hyperboloid
surface with foci at R1 and R2, i.e., a hyperbola of revolution that is symmetric about the baseline
defined by R1 and R2. The user’s position, ro, is then given by the intersection of three hyperbolas
given by Eq.(4)-(6). Each Eq.(4)-(6) is just the equation for a baseline in a classical time of arrival
(TOA) system that records arrival times of classical light pulses (or distinct intensity edges) at
two spatial reception points Ri. In the case of a classical TOA system, pulse arrival time at four

locations is needed to determine all four space-time coordinates. In that case, four time difference
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of arrival (TDOA) equations can be formed from four points, and each point is used multiply
to (effectively) form the baselines. (Taking TDOAs results in a system of three equations where
the emission event time has cancelled out. ) In the quantum case, since correlations between
photon pairs are used, we must use three baselines defined by six points Ri, plus an additional
interferometer for the determination of the user’s time. As we will see below, the QPS is an
interferometric system.

More fundamentally, and more significant for applications, is that in the classical case of a TOA
system, we must have good clocks that are synchronized to coordinate time so that accurate pulse
arrival times at the four Ri reception points can be recorded. A good clock that keeps coordinate
time is often a difficult requirement to meet in practice[23]. In contrast, in the quantum case
two-photon coincidence counts at detectors D1and D2 are measured and only a good ”flywheel”
clock is needed (i.e., a clock having a good short-term stability) to measure photon coincidence
count rates while the optical time delay is adjusted, to locate the minimum in Rc.

III. GEOMETRIC DILUTION OF PRECISION

In the case of the classical GPS, the geometrical positions of the GPS satellites determine the
accuracy of the user’s position. This effect is sometimes called the geometric dilution of precision
(GDOP). We compute the positioning accuracy and the effect of GDOP for the QPS from Eq.(4)-
(6). These equations give an implicit relation ro = ro(R1,R2,R3,R4,R5,R6, s1, s2, s3) for the
user position ro as a function of the three measured path delays, si, and the six baseline endpoints
Ri. If we knew the error in the measured path length delays, ds1, ds2,and ds3, we could compute
the error in the three components of the user’s position vector, dro = (dxo, dyo, dzo, ), from

dro =

3
∑

i=1

∂ro

∂si
dsi (9)

for constant Ri. However, these errors are statistical in nature, so instead I compute the standard
deviations σx, σy, and σz, of the user coordinates xo, yo, and zo, as a function of the standard
deviations σs1

, σs2
, and σs3

, of the measured optical time delays s1, s2, and s3. For constant Rk

for k = 1, ..., 6, these standard deviations are related by[24]

σ2
x =

(

∂xo

∂s1

)2

σ2
s1

+

(

∂xo

∂s2

)2

σ2
s2

+

(

∂xo

∂s3

)2

σ2
s3

(10)

σ2
y =

(

∂yo

∂s1

)2

σ2
s1

+

(

∂yo

∂s2

)2

σ2
s2

+

(

∂yo

∂s3

)2

σ2
s3

σ2
z =

(

∂zo

∂s1

)2

σ2
s1

+

(

∂zo

∂s2

)2

σ2
s2

+

(

∂zo

∂s3

)2

σ2
s3

where the partial derivatives are done at constant Rk. The lengthy calculation to compute the
partial derivatives in Eq.(10) is done analytically using Mathematica. For simplicity, I assume
that the error distributions of the si are Gaussian and that the three standard deviations are
equal, σs1 = σs2 = σs3 ≡ σs. For a spherically symmetric probability distribution of 3-dimensional
positions ro = (xo, yo, zo), the spherical error probable (SEP), which is the radius R within which
50% of the points lie, is related[25] to the standard deviations σx = σy = σz ≡ σ by R ∼= 1.538σ.
In our case, the probability distribution of ro is not necessarily spherical. To approximate the
SEP error metric, we compute a weighted approximation to the SEP metric by defining Rxyz

∼=
1.538 1√

3
(σ2

x + σ2
y + σ2

z)
1/2. When the error distribution for ro is spherically symmetrical, the
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error metrics are equal: Rxyz = R. I consider the effect of GDOP for two cases, one in which
the interferometer baselines are near each other, and the other case where the baselines are well
separated, which is the case with classical GPS or a classical TOA system.

A. Geodetic Positioning System

First, consider a case where the three baselines coincide with the three Cartesian coordinate
axes of a reference frame, see Figure 3. Such a case might occur when the baselines are on the
Earth, and we want to determine the position of an object with respect to a topocentric coordinate
system. For example, consider the center of the QPS at the origin of Cartesian coordinates and
an object with a corner reflector at a range of 100m from the QPS, with coordinates (xo, yo, zo) =
(100m)(1, 1, 1)/

√
3. Figure 4 shows a plot of contours of constant values of 1/Rxyz in the xo − yo

plane at zo = 100/
√

3 m, for the interferometer arm (half) length a = 2m and error (standard
deviation) in optical path σs = 1.0 × 10−6 m. In the contour plot, the position error is Rxyz =
8.3 cm for (xo, yo, zo) = (100m)(1, 1, 1)/

√
3, whereas for (xo, yo, zo) = (30m, 30m, 100/

√
3) the

error Rxyz = 3.9 cm, which corresponds to the upper right high-accuracy (light-shaded) region in
Figure 4. On the z-axis at xo = yo = 0 and zo = 100m the error Rxyz is essentially infinite. Figure
5 shows a plot of the error metric Rxyz vs. xo, for yo = 30m and zo = 100m/

√
3, which corresponds

to a line in Figure 4 with relatively small error Rxyz. In the high-accuracy light-shaded region
of Figure 4, for xo = yo = 30m and zo = 100m/

√
3, the dependence of the error Rxyz on the

baseline length 2a is plotted in Figure 6, also using σs = 1.0 × 10−6 m. For a four-meter baseline,
2a = 4m, the error is just under 5 cm.

Note that the position error Rxyz depends linearly on σs, which is the standard deviation (error)
in measurement of the optical path delay needed to obtain the minimum in two-photon coincidence
counts Rc. The width of this minimum depends on the interference filters in front of the photon
coincidence counting detectors as well as the pump laser bandwidth[15, 26]. Depending on the
experimental design, this minimum may be measured to better than σs = 1.0× 10−6 m, which was
used in these plots, and hence accuracies may be better than plotted.

Finally, I note that the error function Rxyz has a very complex dependence on user coordinates
(xo, yo, zo), and as stated earlier, the error function Rxyz also depends critically on the way the
baselines are distributed, i.e., it depends on the six points Rk for k = 1, ..., 6, which define the
baseline endpoints. In the next example, I consider a situation where the baselines do not intersect,
and thereby the error Rxyz is considerably smaller than for the case considered above, even though
the distances are larger.

B. Satellite-based QPS

Now assume that each point of a baseline, Ri, is associated with a different satellite, and that
the spatial interferometer legs are formed from pairs of points (R1,R2), (R3,R4), and (R5,R6),
see Figure 7. Specifically, I assume that the points Rk, are on low-Earth orbit (LEO) satellites. It
may seem optimistic that a QPS is feasible with such large baselines because single photons must
be propagated over these baselines and then reliably detected. However, recently single photons
have been propagated through the atmosphere and detected over 10 km distance in daylight[27],
and another study concludes that there are no obstacles to create a single-photon quantum key
distribution system between ground and low-Earth orbiting satellites[28] . Therefore, a LEO-
satellite QPS may be possible.

As an example of the positioning errors in a QPS made from LEO satellites, I take the baseline
endpoints to be: R1 = (a,−b/2, 0), R2 = (a, b/2, 0), R3 = (b/2, a, 0), R4 = (−b/2, a, 0), R5 =
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(−b/(2
√

2),−b/(2
√

2), a), and R6 = (b/(2
√

2), b/(2
√

2), a). A plot of this configuration is shown
in Figure 7. A contour plot of the reciprocal error function, 1/Rxyz , is shown in the xo − yo plane
for zo = Re/

√
3, where Re = 6378 km is the Earth’s radius, see Figure 8. As an example, in the

calculations below I take the semi-major axis of the LEO satellites to be a = 7360 km and the
baseline between pairs of satellites as b = 20km. The standard deviation (error) in the measured
optical delay is taken to be σs = 1.0µm. For a user on the surface of the Earth with coordinates
(xo, yo, zo) = (1, 1, 1)Re/

√
3 the error is Rxyz = 0.10 cm . For these same parameters, Figure 9

shows a plot of the position error Rxyz vs. xo for yo = zo = Re/
√

3. Note that over a large range
of xo-values the error remains below 1 cm. Finally, Figure 10 shows a plot of the position error
in the radial direction: Rxyz

(

ro/
√

3, ro/
√

3, ro/
√

3
)

vs. ro for the same parameters. On a radial
line in the (1,1,1) direction, the error remains below 1 cm up to ro = 11680 km . However, near
1300 km the error rises steeply. This is an example of the complex dependence of Rxyz on user
position, which was mentioned earlier.

Clearly, the geometric positioning and layout of the baselines significantly affects the accuracy
of a user’s position. Note that the terrestrial QPS (discussed in the previous section) had a ratio
of baseline length to user position a/ro = 0.02, whereas this LEO satellite QPS has b/a = 0.003.
By comparing the baseline layout for the terrestrial QPS and this LEO satellite QPS, it is clear
that the positioning accuracy is sensitive to the separation and layout of the baselines, but not so
sensitive to the baseline lengths. Other calculations (not shown) support this conclusion.

The above calculations for a satellite-based QPS are only meant as an example to illustrate
the magnitude of errors in position that may be achievable. A significant amount of engineering
calculations must be performed to design a realist satellite-based QPS. Furthermore, real satellites
are moving and engineering similar to that used in the classical GPS would have to be done, e.g.,
using Kalman filtering techniques. Obviously, bright sources of entangled photons (biphotons)
are needed. The calculations above suggest that if properly engineered, a satellite-based QPS may
achieve position accuracy of objects near the Earth’s surface below 1cm. In these calculations, I
have ignored the time delays introduced by the atmosphere. However, corrections can be made
for atmospheric effects using multiple colors of photons similarly to what is done with the GPS.
Perhaps one advantage of the quantum system as compared to the classical GPS is that entangled
photons exhibit group velocity dispersion cancellation, which may be an important factor for future
engineering and design of a QPS [29, 30, 31, 32].

IV. ALTERNATIVE SCENARIOS

A. Position-Only Determination

A QPS can be designed to work in several modes, depending on the needs of the user and the
required scenario. In the above discussion, we have described the case where a user of the QPS
wants to determine both his spatial and time coordinates, (to, xo, yo, zo). A second alternative is
that a user may only need to obtain their spatial coordinates, and he may not need the correct
time. In this latter case, the time synchronization portion of the system is not needed, and the
user may find their position coordinates (xo, yo, zo) by having only a corner reflector and a one-way
(reception only) classical channel of communication with the reference frame origin, where the
simultaneity of the three two-photon coincidence counting rate minima is established.

Another mode of operation of a QPS is where we want to determine the position of an object
with a corner cube reflector, such as a geostationary satellite. In such a case, information on the
position of the satellite, ro = (xo, yo, zo), is only needed on the ground. The satellite’s position
coordinates can be determined on the ground using a QPS, and only a corner cube reflector is
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needed on the satellite, but no communication channel to the satellite and no on-board clock is
needed.

B. User Carries QPS Receiver

The scenarios that we have described above are ones where the measurements (adjusting the
optical delays) and the calculations (to compute ro) are done near the origin of the reference
frame. In a classical GPS receiver, the computations (correlations of PRN codes to at least four
satellites) are done locally in the user’s GPS receiver that the user carries with him. The QPS
analog of this classical GPS scenario is a setup where the biphotons are generated at points E1,

E2, and E3, but the user carries with him the 50:50 beam splitters and photon detectors. In this
scenario, the user controls (and carries with him) the optical delays, see Figure 1, and he locally
measures the optical delays s1, s2, and s3. The user must receive a classical message consisting
of the coordinates of baseline endpoints, Ri, i = 1, ..., 6, and then he must solve the Eq.(4)-(6)
for his position ro = (xo, yo, zo). In such a case, there are no clocks on-board the broadcasting
satellites (located at positions Ri), however, the user must carry a clock with short term stability
to determine rate of photon coincidence counts from each of the three baselines (associated with
spatial positioning) and also he must do coincidence counting for time determination (if time is
needed). For the three spatial baselines, optical propagation is then one-way (using the satellite
positions as a primary reference system, see below) from satellites to QPS user receiver. For
time synchronization, however, as mentioned previously, the optical propagation must be two-way
(when using the method of Bahder and Golding). In essence, for each of the four channels, the QPS
receiver consists of a beam splitter, two single-photon detectors, and a controllable optical delay.
All four space-time coordinates can be obtained by a user in this way. One clock in the reference
frame must have long-term stability to define coordinate time, and another clock in the QPS user
receiver can have short-term stability. Note that the satellites do not need to carry clocks, because

their positions can be used to define the primary system of coordinates. This type of QPS is a
close analog of the classical GPS.

V. QPS SPACE-TIME COORDINATES

The satellites at baseline points Ri can be taken to define the primary system of reference,
even though the points Ri change with time. The quantities measured by a user of such a QPS
are then (s0, s1, s2, s3), where s0 is the optical time delay (in the HOM interferometer) that will
provide the user with coordinate time in this coordinate system (using the Bahder and Golding
method), and (s1, s2, s3) are the three optical delays in the three interferometers for position
determination. The quantities (s0, s1, s2, s3) are then to be regarded as generalized 4-dimensional
space-time coordinates[33], s0 is a time-like coordinate and (s1, s2, s3) are space-like coordinates.
Within the context of general relativity, such coordinates are as good as any other coordinates,
and they enter into the metric c2dτ2 = gijdsidsj of the flat space-time assumed in this work. Of
course, a transformation from the QPS space-time coordinates, (s0, s1, s2, s3), to an Earth-centered
inertial (ECI) system of coordinates, say (t, x, y, z), is of interest for astrodynamic applications.
Such a transformation can be done approximately by conventional means of tracking the satellites
(at baseline points Ri).

It is interesting to remark that the QPS allows the direct measurement of 4-dimensional space-
time coordinates. Previously, it was believed that space-time coordinates were not measurable
quantities[33, 34, 35, 36]. Of course, the QPS coordinates (s0, s1, s2, s3) are real physical measure-
ments, and it is well-known that real measurements are space-time invariants under generalized
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coordinate transformations[33].

VI. SUMMARY

I have presented a conceptual scheme for an interferometric quantum positioning system (QPS)
based on second order quantum coherence of entangled photon pairs (biphotons). A user’s spatial
coordinates are determined by locating three unique minima in three different two-photon counting
rates, associated with three HOM interferometers built on independent baselines. The spatial
portion of the QPS is similar to a classical TOA system, however, a classical TOA system requires
synchronized clocks that keep coordinate time, which is often a difficult requirement to meet.
In contrast, the QPS only requires a clock having a short-term stability to measure two-photon
coincidence counting rates while the optical time delay is adjusted (to locate the minima in the
two-photon coincidence counting rate Rc). Bright sources of entangled photons (biphotons) are
needed.

Several different scenarios were considered for a QPS: one is a terrestrial system and the another
is space-based. In both cases, I computed the accuracy of a user’s position as a function user
position. The function that describes the errors in position has a complex spatial dependence. In
the case of the terrestrial QPS, the position accuracy was relatively poor because the baselines
were located near each other. This could be dramatically improved by moving apart the baselines.

As an example of a satellite-based QPS, I have proposed a LEO-satellite QPS. Neglecting
atmospheric effects, calculations suggest that the position accuracy Rxyz of such a QPS can be
below the 1 cm-level for an error (standard deviation) in the optical delays σs = 1.0µm associated
with the minima in two-photon counting rates Rc. The complex dependence of Rxyz on user
position suggests that significant engineering must be done to design a realistic QPS.
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FIG. 1: One baseline is shown for the quantum positioning system (QPS). Points R1 and R2 on the baseline
contribute to the definition of the reference frame for spatial positioning. Box E1 contains an entangled
photon (biphoton) source and 50:50 beam spliter, see Figure 2. The quantity D1 is a controllable, calibrated
optical delay.
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FIG. 2: An expanded view of the contents of each of the three boxes E1, E2, and E3, which are located on
the three baselines, one of which is shown in Figure 1. Each box contains an entangled photon (biphoton)
source, a 50:50 beam splitter, and two single-photon detectors D1and D2, to perform photon coincidence
counting.
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FIG. 3: The baselines are shown for a possible terrestrial QPS that might be used on the Earth. The
baselines lie along the x, y, and z axes, are of length 2a and are orthogonal to each other.
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FIG. 4: A plot of the contours of constant 1/Rxyz is shown in the xo − yo plane at zo = 100/
√

3m.
Light-shaded areas are small values of Rxyz. Units on both axes are meters.



15

-100 -50 0 50 100
xo @mD

0.05

0.075

0.1

0.125

0.15

0.175

0.2
R

zyx
@m

D

FIG. 5: The error Rxyz vs. xo is plotted for yo = 30 m and zo = 100 m/
√

3, which corresponds to a line in
Figure 4 with relativily small error Rxyz. The same parameters are used in this plot as in Figure 4. Units
on both axes are meters.
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FIG. 6: The error Rxyz vs. a (half the interferometer baseline length) is plotted for xo = yo = 30 m, and
zo = 100 m/

√
3, which corresponds to the high-accuracy light-shaded region in upper right of Figure 4.

Units on both axes are meters.
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FIG. 7: A schematic of the LEO satellite QPS is shown. Pairs of satellites orbiting Earth, shown by
connecting lines, form the interferometer baselines of length b. Example numbers used in this calculation
have baseline b = 20 km and LEO satellite semi-major axis a = 7360 km .
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FIG. 8: Contours of constant reciprocal position error, 1/Rxyz, are shown in the xo−yo plane for zo = Re/
√

3
and σs = 1.0 µm. Lighter-shaded areas are smaller values of error Rxyz. The semi-major axis of the LEO
satellites is taken to be a = 7360 km and the baselines (satellite pair separation) b = 20 km.
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FIG. 9: Plot of position error, Rxyz vs. xo, shown for yo = zo = Re/
√

3 with σs = 1.0 µm. The semi-major
axis of the LEO satellites is taken to be a = 7360 km and the baselines (satellite pair separation) b = 20 km.
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FIG. 10: Plot of position error in the radial direction, Rxyz vs. ro, where ro =
√

x2
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+ y2
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and
σs = 1.0 µm. The semi-major axis of the LEO satellites is taken to be a = 7360 km and the baselines
(satellite pair separation) b = 20 km.
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